Koszul Bipartite Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul Algebras Associated to Graphs

Quadratic algebras associated to graphs have been introduced by I. Gelfand, S. Gelfand, and Retakh in connection with decompositions of noncommutative polynomials. Here we show that, for each graph with rare triangular subgraphs, the corresponding quadratic algebra is a Koszul domain with global dimension equal to the number of vertices of the graph.

متن کامل

Packing Bipartite Graphs with Covers of Complete Bipartite Graphs

For a set S of graphs, a perfect S-packing (S-factor) of a graph G is a set of mutually vertex-disjoint subgraphs of G that each are isomorphic to a member of S and that together contain all vertices of G. If G allows a covering (locally bijective homomorphism) to a graph H, i.e., a vertex mapping f : VG → VH satisfying the property that f(u)f(v) belongs to EH whenever the edge uv belongs to EG...

متن کامل

Koszul algebras from graphs and hyperplane arrangements

This work was started as an attempt to apply theory from noncommutative graded algebra to questions about the holonomy algebra of a hyperplane arrangement. We soon realized that these algebras and their deformations, which form a class of quadratic graded algebras, have not been studied much and yet are interesting to algebra, arrangement theory and combinatorics. Let X be a topological space h...

متن کامل

The p-median and p-center Problems on Bipartite Graphs

Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...

متن کامل

Enumeration of Bipartite Graphs and Bipartite Blocks

We use the theory of combinatorial species to count unlabeled bipartite graphs and bipartite blocks (nonseparable or 2-connected graphs). We start with bicolored graphs, which are bipartite graphs that are properly colored in two colors. The two-element group S2 acts on these graphs by switching the colors, and connected bipartite graphs are orbits of connected bicolored graphs under this actio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 1999

ISSN: 0196-8858

DOI: 10.1006/aama.1998.0615